ЭВОЛЮЦИЯ МИНЕРАЛОВ ПЛАТИНОВОЙ ГРУППЫ ГАББРО-ПИРОКСЕНИТ-ДУНИТОВЫХ ПЛУТОНИЧЕСКИХ КОМПЛЕКСОВ КОРЯКСКОГО НАГОРЬЯ (РОССИЯ)

Мочалов А.Г.

Институт геологии и геохронологии докембрия РАН, Санкт-Петербург, Россия e-mail: mag1950@mail.ru

EVOLUTION OF PLATINUM GROUP MINERALS OF THE GABBRO-PYROXENITE-DUNITE PLUTONIC COMPLEX IN THE KORYAK HIGHLAND (RUSSIA)

Mochalov A.G.

Institute of Precambrian Geology and Geochronology RAS, St. Petersburg, Russia e-mail: mag1950@mail.ru

The gabbro-pyroxenite-dunite plutonic complexes in the Koryak Highland are typical of a regional palaeoisland arc system, that formed in the Late Cretaceous–Paleocene. The gabbro-pyroxenite-dunite plutonic complexes are allocated platinum (I – Pt), osmic-platinum (I – Pt>Os) and iridic-platinum (II – Pt>Ir) mineralogical-geochemical types. Minerals of platinum group of the I – Pt and I – Pt>Os types are magmatic-fluid-metacomatic genesis. Minerals of platinum group II – Pt>Ir type are fluid-metamorphic genesis. II – Pt>Ir, I – Pt and I – Pt>Os types are complicated hydrothermal-metacomatic by association minerals of platinum group (III) connected with process serpentinization the ultrabasic rocks. Formation of chromite schlieres with minerals of platinum group II – Pt>Ir type inclusions probably are result of high-temperature synmagmatic recrystallization of dunites. During this recrystallization processes the ore components (magmatic-chromespinelides and minerals of platinum group of the I – Pt and I – Pt>Os types) were extracted from the dunite plutonic complexes and concentrated in ore minerals of platinum group II – Pt>Ir type and chromite schlieres in the recrystallization dunites (the texture varies from polygonal equigranular to porphyroclastic with fine-grained matrix).

Южнокорякские островодужные плутоны относятся к дунит-клинопироксенит-габбровой ассоциации. Породы массивов комагматичны пикрит-базальтовым потокам поздний мел – палеоценовой Ачайваямской островной дуги. Формирование дунитовых тел объясняется многократными поступлениями недифференцированной магмы в камеру и кристаллизацией хромшпинельоливиновых кумулятов с периодическим удалением остаточного расплава. В процессах выдавливания дунитов вместе с порцией остаточной магматической суспензии последовательно формировались оливин-клинопироксеновые кумуляты и габброиды [14, 15].

Детально изучены минералы платиновой группы (МПГ) всех россыпей, промежуточных коллекторов и их коренных источников - габбро-пироксенит-дунитовых массивов Гальмоэнан и Сейнав [4-6, 11-13]. Выделены минералого-геохимического типы: *иридисто-платиновый* (*Pt>Ir*) - главный промышленный и *платиновый* (*Pt*) - второстепенный промышленный (табл. 1, 2). МПГ Pt>Ir типа являются производными хромититов и крупно-порфирокластических дунитов с реликтами полигональных и пегматоидных разностей. Их генезис флюидно-метаморфогенный и связан с неоднократной синмагматической рекристаллизацией первично-магматических дунитов и флюидным перераспределением в этом процессе элементов платиновой группы (ЭПГ) в минеральные агрегаты. МПГ Pt типа рассеяны в кумулятивных сериях мелкозернистых дунитов, пироксенитов и габбро. Установлен *осмисто-платиновый* (Pt>Os) минералого-геохимического тип в срастаниях с пироксеном (табл. 1, 2) [8, 9]. Геохимия редких элементов пироксенов из агрегатов с МПГ Pt > Os типа свидетельствует о комагматичном их родстве с оливин-клинопироксеновыми кумулятами и габбро, и частично с метасоматическими прожилками и шлирами пироксенитов в дунитах. Изоферроплатина Pt>Os типа с одной стороны является аналогом таковой из Pt типа (табл. 1, 2), с другой стороны, она насыщена самородным осмием (табл. 1, 2). Известно, что минералы осмия подвергаются многократному растворению, газовому перерас-

Таблица 1 МПГ магматогенно-флюидно-метасоматической (I), флюидно-метаморфогенной (II) и гидротермально-метасоматической (III) ассоциаций

МПГ	I		II	III		
IVIIII	Pt	Pt>Os	Pt>Ir			
Самородная платина – (Pt,Fe,Rh,Pd)	AA	ААИ	Не обн.	Не обн.		
Изоферроплатина – (Pt, Rh,Pd) ₃ Fe	ИИИА	АААИ	ΑИ	«		
Изоферроплатина – (Pt,Ir) ₃ Fe	АИ	Не обн.	АААИИ	«		
Тетраферроплатина – PtFe	АИ	A	АИВ	ААИИ		
Туламинит – Pt ₂ FeCu	Не обн.	Α		АААИВ		
Хонгшит – PtCu	«	Не обн.		A		
Самородная медь с платиной – (Cu,Pt)	«	«		A		
Самородный осмий – (Os)	ВИ	AABB	В	Не обн.		
Самородный осмий – (Os,Ir)	Не обн.	Не обн.	В	«		
Самородный иридий – (Ir,Os,Pt)	«	«	В	«		
Гексаферрум – (Fe,Ru,Os,Ir)	В	«	Не обн.	«		
Фаза-1 – Rh ₃ Fe	«	A	«	«		
Куперит – PtS	AB	AB	AB	«		
Сперрилит – PtAs ₂	ИИА	Не обн.	ИИАВ	«		
Платарсит – $Pt(As,S)_2$	AB	Не обн.	В	«		
$Эрликманит - OsS_2$	Не обн.	«	В	«		
$ m Лаурит - RuS_2$	«	В	В	«		
Кашинит – (Ir,Rh) S_2	«	Не обн.	В	«		
Купроиридсит – $CuIr_2S_4$	«	«	В	«		
Ирарсит – IrAsS	«	«	В	«		
Прассоит – $(Rh,Pt)_{17}S_{15}$	«	«	В	«		
Фаза-2 – $(Rh,Pt)_6S_5$	«	В	Не обн.	«		
Фаза-3 – (Rh,Pt)S	«	В	«	«		
Φ a3a-4 – (Rh,Pt) ₄ S ₅	«	В	«	«		
Фаза-5 – $(Rh,Pt)_3S_4$	«	В	«	«		
Купрородсит — $CuRh_2S_4$	«	Не обн.	В	«		
Холлингвортит – RhAsS	В	«	В	«		
Соболевскит – PdBi	Не обн.	«	В	«		
Фаза-6 – оксиды Pt и Fe	«	A	A	«		
Фаза-7 – оксиды Ir, Os, Ru и Fe	«	Не обн.	В	«		
Фаза-8 – оксиды Ru, Os и Fe	«	В	В	«		
Фаза-9 – оксиды Rh, Pt и Fe	«	В	Не обн.	**		

Примечание. И — кристаллы, мономинеральные агрегаты; A — полиминеральные агрегаты; B — микровключения в кристаллах и агрегатах. Распространенность минералов: ИИИ, AAA — от 10 до 100 мас.%; UU, AA, — от 1 до 10 мас.%; UA, UA

пределению и метакристаллизации [2, 3, 5, 6], поэтому генезис Pt>Os типа обусловлен контаминацией Оs из МПГ эндоконтактов ранних ультраосновных пород на «королек» Pt и Fe последующих кумулятов. О магматогенно-флюидно-метасоматическом образовании Pt типа в магнезиальных дунитах, показано на примере экзоконтактов кумулятивных такситовых серий в остаточных комплексах офиолитов Красногорского массива [3, 5, 10]. Таким образом, образование МПГ Pt и Pt>Os типов обусловлено магматической кристаллизацией плутонических тел массива и их флюидно-метасоматическим воздействием на ранние ультраосновные породы. МПГ Pt и Pt>Os типов вместе с ЭПГ содержащими сульфидами Fe и Ni [11] являются главным источником Pt>Ir типа. Pt>Ir, Pt и Pt>Os типы осложняет гидротермально-метасоматическая ассоциация МПГ связанная с процессом серпентинизации ультраосновных пород (III, табл. 1, 2). Этот процесс в целом направлен на уничтожение (растворение) ранних ассоциаций МПГ.

Таким образом, в процессе первоначального поступлениями недифференцированной магмы в камеру и кристаллизации хромшпинель-оливинового кумулята происходит зарождение и развитие МПГ Pt типа. В экзоконтактах недифференцированной магмы ранние кумуляты подвергаются высокотемпературному и флюидному воздействию и формируются своеобразные ме-

Таблица 2

флюидно-метаморфогенной (II Pt>Ir muna) и гидротермально-метасоматической (III) ассоциаций МПГ Минеральный и химический состав магматогенно-флюидно-метасоматической (I Pt и I Pt>Os munos),

Сумма	Ше		90,81	0,18	0,25		0,05	91,29		84,49	0,11	4,44		0,40	89,44		89,61	0,53	0,22	0,14	0 14
	Ьd		06'0	<0,01	<0,01		<0,01	06'0		6,0	<0,01	<0,01		<0,01	0,91		0,29	<0,01	<0,01	<0,01	<0.01
	Rh		1,07	<0,01	<0,01		<0,01	1,07		1,04	<0,01	<0,01		0,19	1,23	й	0,73	<0,01	<0,01	<0,01	0.02
Содержание ЭПГ, мас. %	Ru		0,02	<0,01	<0,01		<0,01	0,02		0,05	<0,01	<0,01		90,0	0,11	уч. Пенисты	0,05	<0,01	<0,01	<0,01	0.04
Содержание	SO	Гапельваям	0,32	<0,01	0,24		<0,01	0,56		0,35	<0,01	4,28		0,03	4,66	. Ледяной и р	0,31	<0,01	0,19	0,03	0.05
	ıľ	льваям и р.	0,40	<0,01	0,01		<0,01	0,41	с диопсидом	0,31	<0,01	90,0		0,01	0,38	:80-183), py¤	1,49	0,01	0,03	60,0	0.01
	Pt	. Гальмотапе	88,10	0,18	<0,01		0,05	88,33		81,83	0,11	0,10		0,11	82,15	ываям (Р.Л. 2	86,74	0,52	<0,01	0,02	0.02
Содержание	минерала, мас. %	Месторождений р. Гальмотапельваям и р.	99,65	0,23	0,26	Не обн.	0,12		(I <i>Pt>Os</i>) Сростки МП	94,80	0,14	4,51	Не обн.	0,55		ений р. Левтыринываям (Р.Л. 280-183), руч. Ледяной и руч. Пенистый	98,71	89'0	0,23	0,14	0.24
	u	(I Pt)	125	14	10		23			109	15	79		45		(II Pt > Ir) Месторожд	487	163	33	23	152
	Минерал		Изоферроплатина	(III) Тетраферроплатина – туламинит	Самородный осмий	Самородный иридий	Халькогениды ЭШ	(I Pt) + (III)		Изоферроплатина	(III) Тетраферроплатина – туламинит	Самородный осмий	Самородный иридий	Халькогениды ЭШ	(I Pt > Os) + (III)	$\Pi Pt > Ir$	Изоферроплатина	(III) Тетраферроплатина – туламинит	Самородный осмий	Самородный иридий	Халькогениды ЭПГ

Примечание. Составы рассчитаны по программе на основании ситовых, минералогических, минераграфических, химических анализов и измерения плотности проб «шлиховой платины». тасоматиты – крупнозернистые и пегматоидные дуниты с ламелями хромшпинелида и хроммагнетита в оливине и с магматогенно-флюидно-метасоматической ассоциацией МПГ. Под влиянием последующих внедрений недифференцированной магмы и динамических напряжений на ранние дунитовые тела происходит их синмагматическая рекристаллизация с флюидным перераспределением ЭПГ и развитием флюидно-метаморфогенной ассоциации МПГ и хромититов. Развитие магматогенно-флюидно-метасоматической и флюидно-метаморфогенной ассоциаций МПГ прямо пропорционально поступлениям в камеру порций недифференцированной магмы. В известных щелочно-ультраосновных массивах Кондёр и Чад, а также габбро-пироксенит-дунитовом массиве о. Феклистова Дальнего Востока [4, 6], в которых возможно рассчитать необходимые параметры (объем денудационного среза дунитов, количество Рt в эродированных дунитах, запасы Рt в россыпях и др.) развитие флюидно-метаморфогенной ассоциации МПГ не превышает первых процентов от суммы Рt распространенной в дунитах [5, 7], скорей всего в форме микроскопических МПГ магматогенно-флюидно-метасоматической ассоциации.

ЛИТЕРАТУРА

- 1. Дмитренко Г.Г., Мочалов А.Г., Паланджян С.А., Горячева Е.М. Химические составы породообразующих и акцессорных минералов альпинотипных ультрамафитов Корякского нагорья. Часть 1 и 2. Магадан: СВКНИИ ДВНЦ АН СССР, 1985. 140 с.
- 2. *Жерновский И.В., Мочалов А.Г.* Генетическая кристаллография гексагональных твердых растворов осмия, рутения и иридия // Геология рудных месторождений. 1999. № 6. С. 546-561.
- $3.\ \mathit{Мочалов}\ A.\Gamma.$ Минералогия платиновых элементов альпинотипных ультрамафитов. Автореф. дисс. канд. геол.-мин. наук. Л.: ЛГИ, 1986. 22 с.
- 4. *Мочалов А.Г.* Россыпи платиновых металлов // Россыпные месторождения России и других стран СНГ. М.: Научный мир, 1997. С. 127-165.
- 5. Мочалов $A.\Gamma.$ «Шлиховая платина» россыпей Дальнего Востока России. Автореф. дисс. Ч д-ра геол.-мин. наук. М.: ИГЕМ, 2001. 48 с.
- 6. *Мочалов А.Г.* Россыпеобразующие формации минералов платиновой группы Дальнего Востока России // Рудные месторождения и процессы рудообразования. М.: ИГЕМ РАН, 2005. С. 367-386.
- 7. *Мочалов А.Г.* Распространение минералов платиновой группы весьма мелкой, тонкой и пылевидной фракций // Россыпи и месторождения кор выветривания: факты, проблемы, решения. Тез. докл. Пермь: Изд-во Пермского ун-та, 2005. С. 175-177.
- 8. *Мочалов А.Г.* Новый осмисто-платиновый минегалого-геохимический тип зональных габбро-пироксенит-дунитовых массивов юга Корякского нагорья (Россия) // ДАН. 2009. Т. 426. № 2.
- 9. *Мочалов А.Г., Бортников Н.С.* Новые критерии генезиса минералов платиновой группы в срастаниях с пироксенами из зональных габбро-пироксенит-дунитовых массивов юга Корякского нагорья (Россия) // ДАН. 2008. Т. 421. № 4. С. 520-524.
- 10. *Мочалов А.Г.*, *Жерновский И.В.*, *Дмитренко Г.Г.* Состав и распространенность самородных минералов платины и железа в ультрамафитах//Геология рудных месторождений. 1988. №5. С. 47-58.
- 11. Мочалов А.Г., Зайцев В.П., Перцев А.Н., Власов Е.А. Минералогия и генезис «шлиховой платины» россыпных месторождений южной части Корякского нагорья (Россия) // Геология рудных месторождений. 2002. № 3. С.212-238.
- 12. Мочалов А.Г., Зайцев В.П., Назимова Ю.В., Перцев А.Н., Вильданова Е.Ю. Вариации состава «шлиховой платины» россыпных месторождений южной части Корякского нагорья (Россия) // Геология рудных месторождений. 2002. № 6. С. 556-570.
- 13. Назимова Ю.В., Зайцев В.П., Мочалов А.Г. Минералы платиновой группы габбро-пироксенит-дунитового массива Гальмоэнан южной части Корякского нагорья (Россия) // Геология рудных месторождений. 2003. № 6. С. 547-565.
- 14. *Перцев А.Н*. Петрология плутонических мафит-ультрамафитовых комплексов активных областей перехода океан-континент: Автореф//Дис. Чд-ра геол.-мин. наук. М.:ИГЕМ, 2004. 46 с.
- 15. Batanova V.G., Pertsev A.N., Kamenetsky V.S., Ariskin A.A., Mochalov A.G., Sobolev A.V. Crustal Evolution of Island-Arc Ultramafic Magma: Galmoenan Pyroxenite-Dunite Plutonic Complex, Koryak Highland (Far East Russia) // J. Petrology. 2005. V. 46. № 7. P.1345-1366.