illment

)

25.00.05 -

-

(

-

:

:

,

2006-11

,

,

.

1.

,

,

· 2. ·

3. -

,

H-

:

1.

:

,

; , (3000–3800 ~ **»** ; OH-0 -; OH-; ICP-MS; ; ()); () (OH-()

« 14.740.11.1212, NK-545P), » 2.1.1/5741,

(

8 14,

Thermo Nicolet

,

2

4-

•

OH

2 –

3432

3378 ⁻¹ [Pankrath, 1991].

Peakfit,

Al

(. 3).

,

8

1.

»

(

~

(

»

).

,

	1	2	3	4	5	6	7
-1	0,09	0,14	0,10	0,18	0,50	0,12	0,03
-1	3198	3208	3298	3379	3407	3609	3739
-2	3,7	30	4,3	4,0	130	20	1,3
-1	38	217	42	21	250	132	43

Aines, Rossman, 1984; Kronen	berg, 1994].		[]	Kats, 19 3200	62; -1
(1) 3300 (3)	•••• • -1 <i>(</i>	•	• • • • •	_1
Si-O	•	3220 - (2)	3410	-1
(5)		$\begin{pmatrix} 1 \end{pmatrix}$			
	O-H	•	[Du (et al., 19	94:
Ostroverkhov et al., 2004]			L	,	,
			(SFG)		
			(~~~~)	3410	-
1					
		, (<i>u</i>	")	,
		("	//).	

,

3378 -1 (4)

Al-OH SiO₄ [Kats, 1962; Aines, Rossman, 1984; Kronenberg, 1994]. -1 3600 3740 -1 OH-

Si-OH

[Kronenberg, 1994].

,

:

•

,

[Aines, Rossman, 1985; Zalkind, Gershenkop, 2006] 3740 -1 -1 3600 OH-

 $C(\mathrm{H}_{2}\mathrm{O}) = C_{\mathrm{H}} \cdot \frac{N_{\mathrm{A}} \cdot M(\mathrm{H}_{2}\mathrm{O}) \cdot 10^{6}}{N_{\mathrm{A}} \cdot M(\mathrm{SiO}_{2}) \cdot 10^{6}} = K \cdot s \cdot \frac{M(\mathrm{H}_{2}\mathrm{O})}{M(\mathrm{SiO}_{2})}$ (1)

$$C(H_{2}O) - , ppm; - 10^{6} Si; N_{A} -$$
; $M(H_{2}O) M(SiO_{2}) - , (K = 1,05), s -$
, -2^{2} , $OH- , , ,$

(1) :

$$C(OH) = C_{\rm H} \cdot \frac{M(OH)}{M({\rm SiO}_2)} \cdot T_{\rm coef} = K \cdot s \cdot \frac{M(OH)}{M({\rm SiO}_2)} \cdot T_{\rm coef}$$
(2)

, ppm; M(OH) - (K = 1,87)C(OH) -OH, OH ; *K* – OH); T_{coef} – /

OH,

6.

: H_2O 10–150 ppm, Al-OH 1,5–11,5 ppm.

20 90 ppm, Al-OH – 2 9 ppm. OH-, 20–6 ppm, . 2–6 ppm, . 10–100 ppm. OH-, , , , 30 ppm

Al-OH,

(. 7).

7 –

8 -

-1 3600

-1 (3740 . 9).

14

1400 °C ~ 20 ppm.

900 °C,

- , 300 °C.

300-16, 543-1), (. 204-4, 594-1), (. 529-1), (. 505-1).

() 2. H_2O 800-26) (-1 H_2O

= 40 ppm 50 ppm, -2 $H_2O = 0 ppm 90 ppm$, -1, 30-40 -2,

.

1. Al-OH

> , ,

Al-OH	-	-	
	Al-OH		(
, ICP-MS).			(

_

,

•

,

•

	, , - , - , - , - , - , - , -	
2.	-	
	-	
	,	Al-OH

3.			
	,		Al-OH
		2	

	•			-
4.		•		
			-	

			•	
5.		,		
				().
				Al-OH

		,	-
6.	·		1200
1400 °C			1200-

900 °C, – 300 °C.

1. : . // / . . . - 2007. -10. - . 43-45 (). 2. » () / ~ . . // . – 2009. – 3. - . 139-144 (). 3. : // . - 2010. -2. . . . 113-122 (). 4. H-) / (. . . // . – 2010. – 4. - . 152-156 (). 5. // . - 2011. -2. - . 93-102 (). 6. / **.** . 6. – . 119-125 (. - 2012. -//). 7. « **»** . . // . - 2012. -12. - . 12-17 ().

 Anfilogov, V.N. Veined quartz of the Urals: structure, mineralogy, and technological properties / V.N. Anfilogov, S.K. Kuznetsov, R.S. Nasirov, M.A. Igumentseva, M.V. Shtenberg, P. Argishev, A. Lebedev / New developments in quartz research: varieties, crystal chemistry and uses in technology. Geology and mineralogy research developments. 2013. pp. 105-142.

9. »: ~ / // . - 2007. -143-144. 10.) » (/ ~ // . - 2008. - . 196-198. : 11. : • //

. - 2008. - . 283-: 284. 12. / . . // . – 2009. « ». – : . 304-306. ____ 13. / // : . – 2010. – . 69-74. 14. // Π / ~ : • – 2010. – . 375-376. : ». – 15. : // III « - 2011. -». 337-338. 16. // XVII « . - 2011. - . 186-187. - 2011». -: 17. . . // / ». – : « . - 2011. - . 270-274. 18. Shtenberg, M.V. Micro-FTIR study of quartz crystals from Zhelannoye deposit, Subpolar Urals / M.V. Shtenberg, S.A. Repina // The 6th International Siberian Early Career GeoScientists Conference: Proceeding of the Conference (9-23 June 2012, Novosibirsk, Russia). – IGM, IPPG, SB RAS & NSU: Novosibirsk. – 2012. – P. 23.

		15.11.2	.013		60	84 1/16.
	". 1,0.		100	•		1,0. 545
				"		"
620146, .		, .		, 83	•	269-18-83